ONE-PARAMETER GROUPS OF ISOMETRIES ON HARDY SPACES OF THE TORUS: SPECTRAL THEORY(1)

BY

EARL BERKSON AND HORACIO PORTA

ABSTRACT. The spectral theory of the infinitesimal generator of an arbitrary one-parameter group of isometries on H^p of the torus, $1 \le p < \infty$, $p \ne 2$, is considered. In particular, the spectrum of the generator is determined.

0. Introduction. The space H^p $(1 \le p < +\infty)$ of the torus C^2 is defined (see [8]) as the subspace of complex $L^p(C^2)$ consisting of those functions whose double Fourier coefficients vanish on the complement of P, where P is the "positive set" in the character group of C^2 , $P = \{(m, n): n > 0\} \cup \{(m, 0): m \ge 0\}$. Throughout what follows we shall use (z, w) $(z = e^{i\theta}, w = e^{i\psi})$ to denote the general point of C^2 , Z^p denotes the closure in $L^p(C^2)$ of the polynomials in z, and we identify Z^p with $H^p(d\theta/2\pi)$.

The strongly continuous one-parameter groups $\{T_t\}$ of isometries on $H^p(C^2)$, $1 \le p < \infty$, $p \ne 2$, were described in [3]. The present paper is devoted to the spectral analysis of their infinitesimal generators, and thereby completes the investigation initiated in [3].

It is known that $\{T_i\}$ leaves Z^p invariant (see (1.1) below), and so the study of $\{T_i\}$ and its infinitesimal generator A naturally splits into two cases according to whether $\{T_i|Z^p\}$ has a bounded generator (§1) or an unbounded generator (§2). In the former case there are a real constant ρ and a real-valued measurable function $\delta(\cdot)$ on the circle C such that

$$(0.1) (T_i f)(z, w) = e^{i\rho t} f(z, e^{i\delta(z)t} w) \text{for } f \in H^p(C^2).$$

As shown in §1, in this case the spectrum of A, $\Lambda(A)$, is the closure of the set $i\{\rho + \bigcup_{n=0}^{\infty} n \text{ [ess. range } (\delta)]\}$. The dependence on $\delta(\cdot)$ of the fine structure of $\Lambda(A)$ is examined in the process.

When $\{T_i|Z^p\}$ has an unbounded generator, it is shown in [3, Theorems (2.22) and 2.24)] (by cocycle methods reminiscent of [6, Lecture V]) that there

Received by the editors December 24, 1975.

AMS (MOS) subject classifications (1970). Primary 46E15, 46E30, 47A10, 47D05.

Key words and phrases. Isometry, Hardy space, torus, group, generator, spectrum.

⁽¹⁾ This research was supported by a Natural Science Foundation grant.

are real constants ρ and δ (with ρ unique), a unique nontrivial one-parameter group $\{\phi_t\}$ of Möbius transformations of the disc D, and a unimodular measurable function $u(\cdot)$ on C such that

$$(0.2) (T_t f)(z, w) = e^{i\rho t} [\phi_t'(z)]^{1/p} f(\phi_t(z), e^{i\delta t} u(\phi_t(z)) \overline{u(z)} w),$$
for $f \in H^p(C^2)$.

The properties of the group $\{T_i\}$ depend on the nature of the set S of common fixed points, in the extended plane, of the group $\{\phi_i\}$. The set S is known to be: (i) a doubleton set of symmetric points with respect to C, (ii) a singleton subset of C, or (iii) a doubleton subset of C (see [2]), and correspondingly, we shall say that $\{\phi_i\}$ is of type (i), (ii), or (iii). If $\{\phi_i\}$ is of type (ii) or (iii), we show in Theorem (2.1) that $\Lambda(A)$ is the imaginary axis. If $\{\phi_i\}$ is of type (i), we show in Theorem (2.2) that $\Lambda(A)$ is either a bilateral arithmetic progression of pure-imaginary numbers, or the whole imaginary axis.

The following notation will be used throughout. The symbols \mathbb{Z} , \mathbb{Z}^+ , \mathbb{R} , and \mathbb{C} will denote, respectively, the set of all integers, the set of nonnegative integers, the real line, and the complex plane. Normalized Lebesgue measure on C (resp., on C^2) will be symbolized by μ (resp., $\tilde{\mu}$).

The authors are indebted to Professor Robert P. Kaufman for valuable comments and suggestions.

1. Spectral analysis when $\{T_t|Z^p\}$ has a bounded generator. For convenience we record here the following theorem of Lal and Merrill [8]:

THEOREM. If T is a linear isometry of $H^p(C^2)$ onto $H^p(C^2)$ $(1 \le p < \infty, p \ne 2)$, then there are $\alpha \in C$, a Möbius transformation of the disc ϕ , and a measurable function $\sigma: C \to C$ such that for all $f \in H^p(C^2)$:

$$(1.1) (Tf)(z,w) = \alpha[\phi'(z)]^{1/p} f(\phi(z),\sigma(z)w).$$

On the other hand, if $1 \le p < \infty$, and α , ϕ , and σ are as above, the right-hand side of (1.1) defines a linear isometry of $H^p(C^2)$ onto $H^p(C^2)$.

For $1 \le p < \infty$, let \Re_p be the set of all strongly continuous one-parameter groups $\{T_i\}$ of isometries of $H^p(C^2)$ such that $\{T_i|Z^p\}$ has a bounded infinitesimal generator (if p=2, we further require that each T_i have the form (1.1)). The following theorem describes \Re_p [3, Theorem (1.5)].

(1.2) THEOREM. Let $\{T_i\} \in \mathcal{K}_p$, $1 \leq p < \infty$. Then there are a real constant ρ and a real-valued measurable function $\delta(\cdot)$ on C such that

$$(1.3) (T,f)(z,w) = e^{i\rho t} f(z,e^{i\delta(z)t}w) for t \in \mathbf{R}, f \in H^p(\mathbb{C}^2).$$

Conversely, for any such ρ and $\delta(\cdot)$, (1.3) defines a group $\{T_i\} \in \mathcal{K}_p$.

REMARK. It is easy to see that for the group $\{T_l\}$ given by (1.3), ρ is uniquely determined, and $\delta(\cdot)$ is uniquely determined up to equality almost everywhere.

We also have the following description of the infinitesimal generator [3, Theorem (1.7)].

- (1.4) THEOREM. For $1 \le p < \infty$, let $\{T_i\}$ in \Re_p have the form (1.3), and let A be the infinitesimal generator of $\{T_i\}$. Then the domain of A, $\Re(A)$, consists of those functions $f \in H^p(C^2)$ for which there is a $g \in H^p(C^2)$ so that for almost all z the following hold:
 - (i) $\delta(z) = 0$ implies g(z, w) = 0 for almost all w;
- (ii) $\delta(z) \neq 0$ implies that there is a (necessarily unique) function F_z on C such that $F_z(e^{i\psi})$ is absolutely continuous for $0 \leqslant \psi \leqslant 2\pi$, $f(z,w) = F_z(w)$ for almost all w, and

$$g(z, e^{i\psi}) = \delta(z) \frac{d}{d\psi} (F_z(e^{i\psi}))$$

for almost all ψ . If f belongs to $\mathfrak{D}(A)$ and g is as above, then

$$Af = i\rho f + g$$
.

In order to describe the spectrum of A we shall need the following standard notion.

DEFINITION. If (X, ν) is a measure space, $\nu \ge 0$, and $h: X \to \mathbf{R}$ is a ν -measurable function, the ν -essential range of h (abbreviated ν -ess. range (h)) is the set of all $x \in \mathbf{R}$ such that for each open neighborhood N of x, $\nu(h^{-1}(N)) > 0$.

We now turn our attention to proving the following theorem.

(1.5) THEOREM. Let A be the infinitesimal generator of a group $\{T_i\}$ in \mathfrak{K}_p , $1 \leq p < \infty$, and let δ and ρ be as in (1.3). Then the spectrum of A is the closure of the set $i\{\rho + \bigcup_{n=0}^{\infty} n[\mu\text{-ess. range }(\delta)]\}$.

Theorem (1.5) will follow from a succession of results established below, which also provide information about the fine structure of $\Lambda(A)$.

Since a change in ρ only translates the generator and its spectrum, we shall for convenience study the group $\{S_i\}$ given by

$$(S_t f)(z, w) = f(z, e^{i\delta(z)t}w).$$

In order to avoid interruption of the flow of ideas later on, we now introduce some terminology and state some convenient facts whose simple proofs will be omitted.

DEFINITION. Let ν be the product measure on $\mathbb{Z}^+ \times C$, where \mathbb{Z}^+ is endowed with discrete measure and C has Lebesgue measure μ . Let $\Delta : \mathbb{Z}^+ \times C \to \mathbb{R}$ be

the function defined by $\Delta(n, z) = n\delta(z)$. Denote by δ the ν -essential range of Δ .

- (1.6) For each $\lambda \in \mathbb{R}$, $\lambda \in \mathcal{E}$ if and only if for each $\varepsilon > 0$, there are $n_{\varepsilon} \in \mathbb{Z}^+$ and $M_{\varepsilon} \subseteq C$ such that $\mu(M_{\varepsilon}) > 0$ and $|\lambda n_{\varepsilon} \delta(z)| < \varepsilon$ for $z \in M_{\varepsilon}$. (In particular $0 \in \mathcal{E}$.)
 - (1.7) & is the closure of $\bigcup_{n=0}^{\infty} n[\mu$ -ess. range (δ)].
- (1.8) For each $\lambda \in \mathbb{R}$, λ is an accumulation point of \mathcal{E} if and only if for each $\varepsilon > 0$, there are $n_{\varepsilon} \in \mathbb{Z}^+$, $\eta_{\varepsilon} > 0$, and $M_{\varepsilon} \subseteq C$ such that $\mu(M_{\varepsilon}) > 0$ and $\eta_{\varepsilon} \leq |\lambda n_{\varepsilon}\delta(z)| < \varepsilon$ for $z \in M_{\varepsilon}$.
- (1.9) If for every $\gamma > 0$ the inverse-image $\delta^{-1}\{(0,\gamma)\}$ (resp., $\delta^{-1}\{(-\gamma,0)\}$) has positive measure, then δ contains every positive (resp., every negative) real number. We shall require some further notation. For $f \in L^p(d\tilde{\mu})$ and $n \in \mathbb{Z}$, let

$$a_f^{(n)}(z) = \frac{1}{2\pi} \int_0^{2\pi} f(z, e^{i\psi}) e^{-in\psi} d\psi.$$

Clearly, $||a_j^{(n)}||_p \le ||f||_p$, where the *p*-norms are taken, respectively, in $L^p(d\theta/2\pi)$ and $L^p(d\tilde{\mu})$. The closed linear span in $L^p(d\tilde{\mu})$ of the functions $z^m w^n$, $m, n \in \mathbb{Z}$, $n \ge 1$, will be denoted by W^p . It is known [9, Lemma 5] that $H^p(C^2) = Z^p \oplus W^p$. It is easy to see that the projection on Z^p along W^p is given by $f \mapsto a_f^{(0)}$. Notice that if $f \in H^p(C^2)$, then for almost all $z \in C$, $a_f^{(-n)}(z) = 0$ for $n = 1, 2, \ldots$ Thus for almost all $z \in C$, $f(z, \cdot) \in H^p(d\psi/2\pi)$.

Returning now to the group $\{S_t\}$, we set $E_{n,\lambda} = \{z \in C: n\delta(z) = \lambda\}$ for $\lambda \in \mathbb{R}$, $\lambda \neq 0$, and $n = 1, 2, \ldots$ Then $\{E_{n,\lambda}\}_{n=1}^{\infty}$ is a sequence of disjoint measurable sets.

(1.10) THEOREM. Let \mathscr{Q} be the infinitesimal generator of the group $\{S_t\}$ acting in $H^p(\mathbb{C}^2)$, $1 \leq p < \infty$, by

$$(S_t f)(z, w) = f(z, e^{i\delta(z)t} w).$$

Then for $\lambda \in \mathbb{R}$, $\lambda \neq 0$, we have:

- (i) The closure of the range of $(\mathcal{Q} i\lambda)$ is the set $\{g \in H^p(\mathbb{C}^2): for n = 1, 2, \ldots, a_g^{(n)}(z) = 0 \text{ for almost all } z \in E_{n,\lambda}\}.$
- (ii) The null-space of $(\mathcal{Q} i\lambda)$ is the set $\{ f \in W^p : \text{ for } n = 1, 2, \ldots, a_f^{(n)}(z) = 0 \text{ for almost all } z \text{ in } C \setminus E_{n,\lambda} \}$.
- (iii) The space $H^p(C^2)$ is the direct sum of the closure of the range of $(\mathcal{Q} i\lambda)$ and the null space of $(\mathcal{Q} i\lambda)$.

PROOF. Let Γ be the set of all $g \in H^p(C^2)$ such that for $n = 1, 2, \ldots, a_g^{(n)}$ vanishes almost everywhere in $E_{n,\lambda}$. The fact that Γ is closed follows from the observation that for each $n, g \mapsto \chi_{E_{n,\lambda}} a_g^{(n)}$ (where χ denotes characteristic function) defines a bounded operator from $H^p(C^2)$ into $L^p(d\theta/2\pi)$. Now suppose $(\mathcal{C} - i\lambda)f = g$. From (1.4)(ii) it follows that if $\delta(z) \neq 0$,

$$\delta(z)\frac{dF_z(e^{i\psi})}{d\psi}-i\lambda F_z(e^{i\psi})=g(z,e^{i\psi}),$$

for almost all ψ . Taking Fourier coefficients we get

$$i(n\delta(z) - \lambda)a_i^{(n)}(z) = a_g^{(n)}(z).$$

It is now clear that Γ contains the range of $(\mathcal{C} - i\lambda)$, and hence its closure.

To prove the reverse inclusion, we first observe that if n is any positive integer and $h \in L^p(d\theta/2\pi)$ vanishes almost everywhere on $E_{n,\lambda}$, then $h(z)w^n$ is in the closure of the range of $(\mathcal{C} - i\lambda)$. In fact, for each positive integer k, let χ_k be the characteristic function of the set $\{z \in C: |n\delta(z) - \lambda| > 1/k\}$. Now define

$$f_k(z, w) = \left[\frac{\chi_k(z)}{i(n\delta(z) - \lambda)}\right] h(z) w^n.$$

It is easy to check that $(\mathcal{C} - i\lambda)f_k = \chi_k(z)h(z)w^n$. It follows from the dominated convergence theorem that $h(z)w^n$ is in the closure of the range of $(\mathcal{C} - i\lambda)$.

Let now $g \in \Gamma$. It is clear from the preceding observation that for each $n=1,2,\ldots,a_g^{(n)}(z)w^n$ is in the closure of the range of $(\ell-i\lambda)$. Also, it is obvious from (1.4) that $\ell a_g^{(0)}=0$ and $a_g^{(0)}$ is in the range of $(\ell-i\lambda)$. Let $g_n(z,w)$ be the *n*th Cesàro mean of the series $\sum_{k=0}^{\infty}a_g^{(k)}(z)w^k$. By the foregoing, g_n belongs to the closure of the range of $(\ell-i\lambda)$. From standard facts about the convergence of Cesàro means $\{g_n\}$ converges to g in $H^p(C^2)$, and the proof of (1.10)(i) is complete.

Now we turn to the proof of (1.10)(ii). For any $f \in H^p(C^2)$, consider the series

(1.11)
$$\sum_{n=1}^{\infty} \chi E_{n,\lambda}(z) a_f^{(n)}(z) w^n.$$

Since the $E_{n,\lambda}$'s are disjoint, for each z this series has at most one term not identically zero in w. We have

(1.12)
$$\left| \sum_{n=1}^{k} \chi_{E_{n,\lambda}}(z) a_f^{(n)}(z) w^n \right| \leq \left[\frac{1}{2\pi} \int_0^{2\pi} |f(z, e^{i\psi})|^p d\psi \right]^{1/p}.$$

Let h(z, w) denote the pointwise sum of the series in (1.11). It is clear from (1.12) that this series converges to h in $L^p(C^2)$, and therefore $h \in W^p$, with $||h||_p \le ||f||_p$. Let us define $Q: H^p(C^2) \to H^p(C^2)$ by setting Qf = h. From the foregoing Q is a well-defined idempotent linear map with $||Q|| \le 1$.

It is easy to see that the null space of Q consists of all $f \in H^p(\mathbb{C}^2)$ such that

for $n = 1, 2, ..., a_f^{(n)}(z) = 0$ for almost all z in $E_{n,\lambda}$. Thus by (1.10)(i) we have

(1.13) The null space of Q is the closure of the range of $(\mathcal{C} - i\lambda)$.

Next we note that if $f \in H^p(C^2)$, then for almost all z, $a_{Qf}^{(n)}(z) = \chi_{E_{n,\lambda}}(z)a_f^{(n)}(z)$ for $n \ge 1$, $a_{Qf}^{(0)}(z) = 0$, and $a_{Qf}^{(n)}(z) = a_f^{(n)}(z) = 0$ for n < 0. From this we see that the range of Q consists of all $f \in W^p$ such that for $n = 1, 2, \ldots, a_f^{(n)}(z) = 0$ for almost all z in $C \setminus E_{n,\lambda}$. From the definition of Q and Theorem (1.4) we find that the range of Q is contained in the null space of $(\mathcal{C} - i\lambda)$. Conversely, suppose $\mathcal{C} f = i\lambda f$. It is easy to see from Theorem (1.4) that the range of Q is contained in Q^p , and so Q^p . It follows readily from Theorem (1.4) that for almost all Q^p , and so Q^p is in the range of Q^p , as characterized above. In summary we have:

(1.14) The null space of $(\mathfrak{C} - i\lambda)$ is the range of Q, and the range of Q consists of all $f \in W^p$ such that for $n = 1, 2, \ldots, a_f^{(n)}(z) = 0$ for almost all z in $C \setminus E_{n,\lambda}$.

Thus (1.10)(ii) is established, and, in view of (1.13), so is (1.10)(iii).

Now we take up the companion theorem (for the case $\lambda = 0$) to Theorem (1.10).

- (1.15) THEOREM. Let $N(\delta) = \{z \in C: \delta(z) = 0\}$ and let $K(z, w) = \chi_{N(\delta)}(z)$. Then with the same notation as in (1.10), we have:
 - (i) The closure of the range of \mathfrak{A} is $(1-K)W^p$.
 - (ii) The null-space of \mathfrak{A} is $\mathbb{Z}^p + KW^p$.
- (iii) The space $H^p(\mathbb{C}^2)$ is the direct sum of the closure of the range of \mathfrak{C} and the null-space of \mathfrak{C} .

PROOF. Let g be in the range of \mathscr{Q} . Then by Theorem (1.4), (1-K)g=g and as noted earlier $g\in W^p$. Obviously, $(1-K)W^p$ is closed and so by the foregoing contains the closure of the range of \mathscr{Q} . To see the reverse inclusion, for $k=1,2,\ldots$, let χ_k be the characteristic function of the set $\{z\in C: |\delta(z)| \ge k^{-1}\}$. Let m,n be integers with n>0 and define

$$f_k(z, w) = \left[\frac{\chi_k(z)}{i\delta(z)}\right] z^m w^n.$$

In a fashion similar to the proof of (1.10)(i) it follows that $(1 - K)z^m w^n$ is in the closure of the range of \mathcal{C} , and this completes the proof of (1.15)(i).

We now prove the less obvious inclusion in (1.15)(ii). Suppose $\mathcal{C}f = 0$. Write f = u + v, $u \in Z^p$, $v \in W^p$. By Theorem (1.4), $\mathcal{C}u = 0$, and hence for almost all $z \in C$ if $\delta(z) \neq 0$, v(z, w) has the same value for almost all w. This constant value must be $a_v^{(0)}(z) = 0$ since $v \in W^p$. Hence v = Kv and $f \in Z^p + KW^p$.

DEFINITION. For $\lambda \in \mathbf{R}$, we denote by Q_{λ} the projection of $H^p(C^2)$ on the null space of $(\mathcal{C} - i\lambda)$ along the closure of the range of $(\mathcal{C} - i\lambda)$.

The stage is now set for considering the fine structure of the spectrum of α .

(1.16) THEOREM. The point spectrum of $(-i\mathfrak{C})$ is

$$\{0\} \cup \Big\{\lambda \in \mathbf{R} \Big\backslash \{0\}: \mu \Big(\bigcup_{n=1}^{\infty} E_{n,\lambda} \Big) > 0 \Big\}.$$

PROOF. Suppose $\lambda \in \mathbf{R}$, $\lambda \neq 0$, and for some positive integer j we have $\mu(E_{j,\lambda}) > 0$. Then by (1.10)(ii), the function $\chi_{E_{j,\lambda}}(z)w^j$ is in the null-space of $(\mathcal{C} - i\lambda)$.

REMARK. Theorem (1.16) shows that the point spectrum of $(-i\mathcal{C})$ is a countable union of arithmetic progressions. Specifically, the point spectrum of $(-i\mathcal{C})$ is the union of $\{0\}$ and

$$\bigcup \{\alpha \mathbf{Z}^+ \colon \alpha \in \mathbf{R}, \mu(\delta^{-1}(\alpha)) > 0\}.$$

The set & discussed in (1.6)–(1.9) now enters the stage.

(1.17) THEOREM. Let $\lambda \in \mathbf{R}$. The range of $(\mathfrak{C} - i\lambda)$ is closed if and only if λ is not an accumulation point of \mathfrak{C} . In this case, there is a bounded linear operator $J_{\lambda} \colon H^p(C^2) \to H^p(C^2)$ such that $J_{\lambda}(H^p(C^2)) \subseteq \mathfrak{D}(\mathfrak{C})$ and $(\mathfrak{C} - i\lambda)J_{\lambda}f = f - Q_{\lambda}f$ for all $f \in H^p(C^2)$.

PROOF. We first prove the existence of J_{λ} for $\lambda \in \mathbb{R}$, $\lambda \neq 0$, where λ is not an accumulation point of &. Let $B_{\lambda}^{(+)}$ (resp., $B_{\lambda}^{(-)}$) be the set of all $z \in C \setminus N(\delta)$ such that $\operatorname{sgn} \delta(z) = \operatorname{sgn} \lambda$ (resp., $\operatorname{sgn} \delta(z) = -\operatorname{sgn} \lambda$), where "sgn" stands for "sign of". For $n = 1, 2, \ldots$, define G_n on C by $G_n(z) = 0$ if $z \in E_{n,\lambda} \cup N(\delta)$, and $G_n(z) = [\operatorname{sgn} \delta(z)](n\delta(z) - \lambda)^{-1}$ if $z \notin E_{n,\lambda} \cup N(\delta)$. Also, let $G_0(z) = -[\operatorname{sgn} \delta(z)]/\lambda$ for $z \in C \setminus N(\delta)$, and $G_0(z) = 0$ for $z \in N(\delta)$. Since λ is not an accumulation point of &, it follows from (1.8) and (1.9), respectively, that there are $\varepsilon_{\lambda} > 0$ and $\gamma_{\lambda} > 0$ such that

(1.18)
$$||G_n||_{\infty} \leqslant \varepsilon_{\lambda}^{-1} \quad \text{for } n = 1, 2, \dots,$$

and

(1.19)
$$|\delta(z)| \geqslant \gamma_{\lambda} \text{ for almost all } z \in B_{\lambda}^{(+)}.$$

For $z \in B_{\lambda}^{(-)}$ (resp., $B_{\lambda}^{(+)}$) the sequence (resp., a tail of the sequence) $\{G_n(z)\}_{n=0}^{\infty}$ is convex. Thus by [5, Theorem (4.5)] for each $z \in C \setminus N(\delta)$ the series

(1.20)
$$G_0(z) + 2 \sum_{n=1}^{\infty} G_n(z) \operatorname{Re}(w^n)$$

converges for all $w \in C \setminus \{1\}$. Since the series in (1.20) converges trivially to 0 for $z \in N(\delta)$, we define a function L(z, w) on $C\chi(C \setminus \{1\})$ by (1.20). For $z \in B_{\lambda}^{(-)}$ we also have from [5, Theorem (4.5)] that

(1.21)
$$L(z,w) \ge 0 \text{ and } (2\pi)^{-1} \int_0^{2\pi} L(z,e^{i\psi})e^{-in\psi}d\psi = G_n(z)$$
for $n = 0, 1, 2, ...$

Let n_{λ} be the largest integer less than or equal to $|\lambda|\gamma_{\lambda}^{-1}$. It follows from (1.19) that for almost all $z \in B_{\lambda}^{(+)}|G_{n}(z)| \leq (n\gamma_{\lambda} - |\lambda|)^{-1}$ for $n > n_{\lambda}$. Thus by (1.18) we have for almost all $z \in B_{\lambda}^{(+)}$,

$$\sum_{n=1}^{\infty} |G_n(z)|^2 \leqslant n_{\lambda} \varepsilon_{\lambda}^{-2} + \sum_{n=n_{\lambda}+1}^{\infty} (n\gamma_{\lambda} - |\lambda|)^{-2}.$$

For such z in $B_{\lambda}^{(+)}$ we see from (1.20) that

(1.22)
$$(2\pi)^{-1} \int_0^{2\pi} |L(z, e^{i\psi})|^2 d\psi = |G_0(z)|^2 + 2 \sum_{n=1}^{\infty} |G_n(z)|^2$$

$$\leq |\lambda|^{-2} + 2n_{\lambda} \varepsilon_{\lambda}^{-2} + 2 \sum_{n=n+1}^{\infty} (n\gamma_{\lambda} - |\lambda|)^{-2}.$$

It is obvious from (1.21) that for $z \in B_{\lambda}^{(-)}$, $(2\pi)^{-1} \int_{0}^{2\pi} |L(z, e^{i\psi})| d\psi = |\lambda|^{-1}$. Let us denote the square root of the majorant in (1.22) by M_{λ} . Then it is immediate from the foregoing that:

(1.23) For almost all $z \in C$, $(2\pi)^{-1} \int_0^{2\pi} |L(z, e^{i\psi})| d\psi \leqslant M_{\lambda}$. Now define a function $k_{\lambda}(\cdot, \cdot)$ by setting $k_{\lambda}(z, w) = -i[\operatorname{sgn} \delta(z)]L(z, w)$ if $z \in C \setminus N(\delta)$, $k_{\lambda}(z, w) = 0$ if $z \in N(\delta)$. For each $f \in H^p(C^2)$ we see from (1.23) that the integral $\int_0^{2\pi} k_{\lambda}(z, we^{-iu}) f(z, e^{iu}) du$ exists for almost all $(z, w) \in C^2$ and defines a $\tilde{\mu}$ -integrable function of (z, w). We set

(1.24)
$$(J_{\lambda}f)(z,w) = (2\pi)^{-1} \int_{0}^{2\pi} k_{\lambda}(z,we^{-iu}) f(z,e^{iu}) du + i\lambda^{-1} \chi_{N(\delta)}(z) f(z,w), \text{ for } f \in H^{p}(C^{2}).$$

We first observe from (1.23) and (1.24) that for almost all $z \in C \setminus N(\delta)$:

Since $M_{\lambda} \ge |\lambda|^{-1}$, it is clear that (1.25) holds for $z \in N(\delta)$. It follows that J_{λ} is a well-defined linear transformation from $H^p(C^2)$ into $L^p(\bar{\mu})$ with $||J_{\lambda}|| \le M_{\lambda}$. If we denote $J_{\lambda}f$ by g, then it is immediate from (1.24) that for almost all $z \in C$, $a_g^{(n)}(z) = 0$ for n < 0, $a_g^{(0)}(z) = i\lambda^{-1}a_f^{(0)}(z)$. This shows that $g \in H^p(C^2)$. Moreover, for almost all $z \in C \setminus N(\delta)$

(1.26)
$$a_g^{(n)}(z) = a_{k_\lambda}^{(n)}(z)a_f^{(n)}(z) \quad \text{for } n = 0, \pm 1, \pm 2, \dots$$

Let z_0 be an arbitrary point in $C \setminus N(\delta)$ such that (1.26) holds. Since the $E_{n,\lambda}$'s are disjoint, it is clear that for all sufficiently large n (say $n \ge n_0 > 0$), $z_0 \notin E_{n,\lambda}$, and so for $n \ge n_0$ (1.26) becomes

(1.27)
$$a_g^{(n)}(z_0) = -i(n\delta(z_0) - \lambda)^{-1} a_f^{(n)}(z_0).$$

Consider now the function h(w) (defined for |w| < 1) by $\sum_{n=n_0}^{\infty} a_g^{(n)}(z_0) w^n$. This function is in H^p of the disc, and we now show that dh/dw is also in H^p of the disc. Clearly by (1.27)

$$h'(w) = -i \sum_{n=n_0}^{\infty} n(n\delta(z_0) - \lambda)^{-1} a_f^{(n)}(z_0) w^{n-1}.$$

So

$$(1.28) \quad i\delta(z_0)h'(w) = \sum_{n=n_0}^{\infty} a_f^{(n)}(z_0)w^{n-1} + \lambda \sum_{n=n_0}^{\infty} (n\delta(z_0) - \lambda)^{-1} a_f^{(n)}(z_0)w^{n-1}.$$

The first series on the right of (1.28) is obviously in H^p . It follows from Hardy's inequality [5, p. 48] that $\sum_{n=n_0}^{\infty} |n\delta(z_0) - \lambda|^{-1} |a_f^{(n)}(z_0)| < \infty$. So the second series on the right of (1.28) is in H^{∞} . By [5, Theorem (3.11)], it now follows that $g(z_0, e^{i\psi})$ is equal for almost all ψ to an absolutely continuous function of ψ . From this it is readily verified (by taking Fourier coefficients with respect to ψ for each fixed z in a set of full measure) that by virtue of Theorem (1.4) $g \in \mathfrak{D}(\mathfrak{C})$ and $(\mathfrak{C} - i\lambda)g = f - Q_{\lambda}f$ in $H^p(\mathbb{C}^2)$.

Now we prove the existence of J_0 with the stated properties under the assumption that 0 is not an accumulation point of \mathcal{E} . For arbitrary f in $H^p(C^2)$, write $f=a_f^{(0)}+v$, where $v\in W^p$. Define V on C^2 by $V(z,e^{i\psi})=\int_0^\psi v(z,e^{iu})\,du$. It is easy to see that $V\in L^p(\tilde{\mu})$, and $\|V\|_p\leqslant 2\pi\|v\|_p\leqslant 4\pi\|f\|_p$, and also that $(V(z,w)-a_V^{(0)}(z))$ is in W^p . Define J_0f on C^2 as follows: $(J_0f)(z,w)=0$ if $z\in N(\delta)$, and

$$(J_0f)(z,w) = [\delta(z)]^{-1}(V(z,w) - a_V^{(0)}(z)) \quad \text{if } z \in C \setminus N(\delta).$$

Since 0 is not an accumulation point of \mathcal{E} , we get from (1.9) that there is $\eta > 0$ such that $|\delta(z)| \ge \eta$ for almost all z in $C \setminus N(\delta)$. It follows that $J_0 f \in W^p$, and $||J_0 f||_p \le (8\pi/\eta) ||f||_p$. It is straightforward to verify that $\mathfrak{C}(J_0 f) = f - Q_0 f$. We remark in passing that the foregoing shows that $||J_\lambda||$ has a majorant which depends only on λ (and δ), but not on p.

Now we show that if $\lambda \in \mathbb{R}$ is not an accumulation point of \mathcal{E} , then $(\mathcal{C} - i\lambda)$ has closed range. In fact, suppose that $\{g_n\}_{n=1}^{\infty}$ is a sequence from the range

of $(\mathcal{C} - i\lambda)$, and $||g_n - g||_p \to 0$. Then $(\mathcal{C} - i\lambda)J_{\lambda}g_n = g_n$. Since $J_{\lambda}g_n \to J_{\lambda}g$, and $(\mathcal{C} - i\lambda)$ is a closed operator, $(\mathcal{C} - i\lambda)J_{\lambda}g = g$.

Now suppose $\lambda \in \mathbb{R}$ is an accumulation point of \mathcal{E} . If $\lambda \neq 0$ (resp., if $\lambda = 0$) then by (1.8) we have for each ε such that $0 < \varepsilon < |\lambda|$ (resp., $0 < \varepsilon$) that there are $n_{\varepsilon} \in \mathbb{Z}^+$, $\eta_{\varepsilon} > 0$, and a set $Y_{\varepsilon} \subseteq C$ such that $\mu(Y_{\varepsilon}) > 0$ and $\eta_{\varepsilon} \leq |\lambda - n_{\varepsilon} \delta(z)| < \varepsilon$ for $z \in Y_{\varepsilon}$. Clearly $n_{\varepsilon} > 0$. Define f_{ε} in W^p by $f_{\varepsilon}(z, w) = \chi_{Y_{\varepsilon}}(z)w^{n_{\varepsilon}}$. It is easy to see that $(\mathcal{C} - i\lambda)f_{\varepsilon} = i(n_{\varepsilon} \delta(z) - \lambda)f_{\varepsilon}$ and so $\|(\mathcal{C} - i\lambda)f_{\varepsilon}\|_{p} \leq \varepsilon \|f_{\varepsilon}\|_{p}$. Let $g_{\varepsilon} = f_{\varepsilon}/\|f_{\varepsilon}\|_{p}$, whence

(1.29)
$$\|(\mathscr{Q} - i\lambda)g_{\varepsilon}\|_{p} \leqslant \varepsilon.$$

Let \mathcal{E} be the operator from the graph of $(\mathcal{E}-i\lambda)$ onto the range of $(\mathcal{E}-i\lambda)$ defined by $\mathcal{E}(f,(\mathcal{E}-i\lambda)f)=(\mathcal{E}-i\lambda)f$. If the range of $(\mathcal{E}-i\lambda)$ were closed, then by the open mapping theorem we would have that the \mathcal{E} -image of the closed ball \mathfrak{B} in the graph of $(\mathcal{E}-i\lambda)$ centered at 0 and of radius $[2(1+\|Q_{\lambda}\|)]^{-1}$ would contain a closed ball around 0 in the range of $(\mathcal{E}-i\lambda)$. By Theorem (1.10)(i) and Theorem (1.15)(i), g_{ε} is in the range of $(\mathcal{E}-i\lambda)$. With the aid of (1.29) we get that for sufficiently small ε , there is $G_{\varepsilon} \in \mathfrak{D}(\mathcal{E})$ such that $\|G_{\varepsilon}\|_{p} \leq [2(1+\|Q_{\lambda}\|)]^{-1}$ and $G_{\varepsilon}-g_{\varepsilon}$ is in the null-space of $(\mathcal{E}-i\lambda)$. Since g_{ε} is in the range of $(\mathcal{E}-i\lambda)$, $G_{\varepsilon}-Q_{\lambda}G_{\varepsilon}=g_{\varepsilon}$. This gives the absurd conclusion $1=\|g_{\varepsilon}\|_{p} \leq (1+\|Q_{\lambda}\|)\|G_{\varepsilon}\|_{p} \leq 1/2$.

We now establish Theorem (1.5) by showing that $\Lambda(\mathcal{C}) = i\mathcal{E}$.

PROOF OF THEOREM (1.5). By Theorem (1.15)(ii) (resp., (1.6)), $0 \in \Lambda(\mathcal{C})$ (resp., $0 \in \mathcal{E}$). Let $\lambda \in \mathbb{R}$, $\lambda \neq 0$. If $\lambda \in \mathcal{E}$, then λ is an accumulation point of \mathcal{E} , or else by (1.6) and (1.8) $\mu(E_{n,\lambda}) > 0$ for some positive integer n. In the first instance the range of $(\mathcal{C} - i\lambda)$ is not closed by Theorem (1.17), while in the second instance $(\mathcal{C} - i\lambda)$ is not one-to-one by Theorem (1.16). So $i\mathcal{E} \subseteq \Lambda(\mathcal{C})$. Conversely, if $i\lambda \in \Lambda(\mathcal{C})$, then the range of $(\mathcal{C} - i\lambda)$ is not closed, or else by Theorem (1.10)(iii) $(\mathcal{C} - i\lambda)$ is not one-to-one. In either event $\lambda \in \mathcal{E}$. This completes the proof.

REMARKS. Let $\lambda \in \mathbf{R}$. (i) If $\lambda \notin \mathcal{E}$, then the operator J_{λ} of Theorem (1.17) is $(\mathcal{C}-i\lambda)^{-1}$, the resolvent operator of \mathcal{C} at $i\lambda$. (ii) If λ is not an accumulation point of \mathcal{E} , then it is easy to see with the aid of Theorem (1.10)(ii), Theorem (1.15)(ii), and the definition of J_{λ} in the proof of Theorem (1.17) that the null space of $(\mathcal{C}-i\lambda)$ coincides with the null space of J_{λ} . Hence $J_{\lambda}=J_{\lambda}(I-Q_{\lambda})$. In particular, the range of J_{λ} is the range of its restriction to the range of $(\mathcal{C}-i\lambda)$. Thus if λ is not an accumulation point of \mathcal{E} and $(\mathcal{C}-i\lambda)$ is not one-to-one, then the range of J_{λ} is not $\mathfrak{D}(\mathcal{C})$. For example, if $\delta=\chi_{\gamma}$, where $0<\mu(Y)<1$, then $\mathcal{E}=\mathbf{Z}^+$, and $(\mathcal{C}-i)$ is not one-to-one.

We close this section with a discussion of the problem of extending $\{S_t\}$, $t \in \mathbb{R}$, to a semigroup of contraction operators indexed by the upper half-plane in C. Specifically, let $\mathcal{H} = \{\zeta \in \mathbb{C} : \text{Im } \zeta \geqslant 0\}$. By the term "con-

traction operator" we shall mean an operator of norm at most one which maps $H^p(C^2)$ into itself. Suppose the mapping $t \in \mathbb{R} \mapsto S_t$ can be extended to a mapping $\zeta \in \mathbb{K} \mapsto S_{\zeta}$ so that $\{S_{\zeta}\}, \zeta \in \mathbb{K}$, is a semigroup of contraction operators which is continuous on \mathbb{K} in the strong operator topology and holomorphic on the interior of \mathbb{K} . Let \mathcal{G} be the infinitesimal generator of $\{S_{iy}\}, y \geq 0$. By [7, Theorem 17.9.2], $\mathcal{G} = i\mathcal{C}$. By [4, VIII. 1.11], $\text{Re}[\Lambda(\mathcal{G})] \leq 0$. So $\text{Im}[\Lambda(\mathcal{C})] \geq 0$, and, by Theorem (1.5), $\mathcal{E} \geq 0$. It follows that $\delta(z) \geq 0$ for almost all z in C. The next result shows that conversely if $\delta \geq 0$ a.e., then $\{S_t\}, t \in \mathbb{R}$, can be extended to a semigroup $\{S_{\zeta}\}, \zeta \in \mathcal{K}$, as above. Without loss of generality we take $\delta \geq 0$ everywhere on C.

(1.30) THEOREM. Suppose $\delta(z) \ge 0$ for all $z \in C$. Then the one-parameter group $\{S_t\}$ in Theorem (1.10) has a unique extension to a semigroup $\{S_{\zeta}\}$, $\zeta \in \mathcal{K}$, of bounded operators on $H^p(C^2)$ such that $\{S_{\zeta}\}$ is continuous on \mathcal{K} in the strong operator topology and holomorphic on the interior of \mathcal{K} . The unique semigroup $\{S_{\zeta}\}$, $\zeta \in \mathcal{K}$, consists of contraction operators.

PROOF. Uniqueness is immediate from the Schwarz reflection principle.

Suppose Im $\zeta > 0$ and $f \in H^p(C^2)$. For almost all $z \in C$, $f(z, \cdot) \in H^p(d\psi/2\pi)$. For such z, let $\tilde{f}(z,w)$ denote (for |w| < 1) the Poisson integral of $f(z, \cdot)$. We define h_{ζ} almost everywhere on C^2 as follows: $h_{\zeta}(z,w) = \tilde{f}(z,e^{i\delta(z)\zeta}w)$ if $\delta(z) > 0$, and $h_{\zeta}(z,w) = f(z,w)$ if $\delta(z) = 0$. It is easy to see that $h_{\zeta} \in H^p(C^2)$, and $||h_{\zeta}||_p \leq ||f||_p$. Let $S_{\zeta}f = h_{\zeta}$. Then S_{ζ} is a contraction operator. For $\zeta \in \mathcal{K}$, it is easy to see that if $f \in H^p(C^2)$, then for almost all $z \in C$, $(S_{\zeta}f)(z,w)$ has (as a function of w) the sequence of Fourier coefficients $\{e^{in\delta(z)\zeta}a_f^{(n)}(z)\}$. It follows readily that $S_{\zeta+\eta} = S_{\zeta}S_{\eta}$ for ζ , $\eta \in \mathcal{K}$. To complete the proof it suffices to show that if $f_0 \in H^p(C^2)$, q is the index conjugate to p, and $g \in L^q(\tilde{\mu})$, then, as a function of ζ ,

$$F(\zeta) \equiv \int_{C^2} g(z, w) [(S_{\zeta} f_0)(z, w)] d\tilde{\mu}(z, w)$$

is continuous on $\mathcal K$ and analytic on the interior of $\mathcal K$. Since $S_{\zeta}u=u$ for $u\in Z^p$, $\zeta\in \mathcal K$, we can assume without loss of generality that $f_0\in W^p$. So there is a sequence $\{v_k\}$ from the linear span of the functions z^mw^n $(m,n)\in \mathbb Z,n>0$ such that $v_k\to f_0$ in $L^p(\tilde\mu)$. Since $\|S_{\zeta}\|\leqslant 1$ for $\zeta\in \mathcal K$, the functions (of ζ)

$$\int_{C^2} g(z,w) [(S_{\zeta} v_k)(z,w)] d\tilde{\mu}(z,w)$$

tend to F uniformly on \mathcal{K} as $k \to \infty$. Accordingly we can further assume without loss of generality that $f_0(z, w) \equiv z^m w^n$ for some $m \in \mathbb{Z}$, $n \in \mathbb{Z}$, $n \in \mathbb{Z}$, $n \in \mathbb{Z}$. Hence $(S_{\zeta}f_0)(z, w) = e^{in\delta(z)\zeta}z^mw^n$ for $\zeta \in \mathcal{K}$. The continuity of F on \mathcal{K} now follows from the dominated convergence theorem.

Let ζ_0 be an interior point of \mathfrak{R} , $y_0 = \operatorname{Im} \zeta_0$. Let $\{\zeta_k\}$ be a sequence of points distinct from ζ_0 such that $|\zeta_k - \zeta_0| < y_0/2$ for all k and $\zeta_k \to \zeta_0$. For all k

(1.31)
$$[F(\zeta_k) - F(\zeta_0)](\zeta_k - \zeta_0)^{-1}$$

$$= \int_{C_k^2} g(z, w) z^m w^n (e^{in\delta(z)\zeta_k} - e^{in\delta(z)\zeta_0}) (\zeta_k - \zeta_0)^{-1} d\tilde{\mu}(z, w).$$

But for each k and all $z \in C$

$$|e^{in\delta(z)\zeta_k} - e^{in\delta(z)\zeta_0}|/|\zeta_k - \zeta_0| \leq n\delta(z)e^{-n\delta(z)y_0/2}.$$

Since the majorant in this last inequality is a bounded function of z, it follows from (1.31) by dominated convergence that

$$F'(\zeta_0) = in \int_{C^2} \delta(z) e^{in\delta(z)\zeta_0} z^m w^n g(z, w) d\tilde{\mu}(z, w).$$

- 2. Spectral analysis when $\{T_i|Z^p\}$ has an unbounded generator. For $1 \le p < \infty$, let Ω_p be the set of all strongly continuous one-parameter groups $\{T_i\}$ of isometries of $H^p(C^2)$ such that $\{T_i|Z^p\}$ is not continuous in the uniform operator topology (if p=2, we further require that each T_i have the form (1.1)). It is known [3, Theorem (2.22) and (2.24)] that a group $\{T_i\} \in \Omega_p$, $1 \le p < \infty$, can be written in the form (0.2). The unique group of Möbius transformations of the disc $\{\phi_i\}$ occurring in (0.2) is called the *conformal group* of $\{T_i\}$. As described in the Introduction, the conformal group of $\{T_i\}$ is assigned a type number depending on the nature of its set of common fixed points in the extended plane. $\{T_i\}$ is said to be of type (i), (ii), or (iii) according as its conformal group is.
- (2.1) THEOREM. Let $\{T_i\} \in \Omega_p$, $1 \leq p < \infty$. If $\{T_i\}$ is of type (ii) or (iii), then the spectrum of its infinitesimal generator is $i\mathbf{R}$.

PROOF. In the case at hand, $\{T_i\}$ can be expressed in the form (0.2) with the real constant δ equal to zero [3, Theorem (2.24)]. There is clearly no loss of generality if we establish the desired conclusion under the additional hypothesis that the real constant ρ in (0.2) is zero. Let U be the isometry of $H^p(C^2)$ onto itself defined by (Uf)(z, w) = f(z, u(z)w), where u is the unimodular measurable function on C in (0.2). Since it suffices to establish the desired conclusion for the group $\{UT_tU^{-1}\}$, we assume further without loss of generality that the function u in (0.2) is identically one.

If $\{T_i\}$ is of type (ii) (resp., type (iii)), we represent its conformal group $\{\phi_i\}$ in the form [1, (1.8)] (resp., [1, (1.9)]). This representation furnishes a certain nonzero real constant c, and a unimodular common fixed point α of the group

 $\{\phi_t\}$. Let λ be any real number. For each $\eta > -p^{-1}$ (resp., for each $\eta \in \mathbb{C}$ with $\text{Re}(\eta) > -p^{-1}$) define f_{η} on $C \setminus \{\alpha\}$ by setting

$$f_{\eta}(z) = (z - \alpha)^{\eta} \exp(\lambda \alpha / c(z - \alpha))$$
 (resp., $f_{\eta}(z) = (z - \alpha)^{\eta}$).

Define $F_{\eta}(z, w) = f_{\eta}(z)w$ for $z \in C \setminus \{\alpha\}$, $w \in C$. It is straightforward to verify that $F_{\eta} \in W^p$. Denote the infinitesimal generator of $\{T_i\}$ by \mathscr{C} . By virtue of the description of \mathscr{C} in [3, (3.16) and Theorem (3.17)], the proof of [1, Theorem (3.1)] applies with obvious minor modifications to show that $\|(\mathscr{C} + i\lambda)F_{\eta}\|_p / \|F_{\eta}\|_p$ (resp., $\|(\mathscr{C} - i\lambda)F_{\eta}\|_p / \|F_{\eta}\|_p$) tends to zero as η approaches $-p^{-1}$ from the right (resp., as η approaches $(-p^{-1} + i\lambda c^{-1})$).

REMARK. In the type (ii) part of the proof of Theorem (2.1) above, the function $f_{\eta} \in L^p(\mu)$ (and hence $F_{\eta} \in W^p$), but f_{η} need not be in $H^p(d\theta/2\pi)$. This state of affairs accounts for the fact that the infinitesimal generator of a type (ii) group on $H^p(d\theta/2\pi)$ has for its spectrum a proper subset of $i\mathbb{R}$ [1, Theorem (3.1)(ii)] in contrast to the outcome of Theorem (2.1) for the torus.

Now let $\{T_i\} \in \Omega_p$ be of type (i) with the representation (0.2). Let c be the angular velocity of $\{\phi_i\}$ (see [2, p. 337]; in particular $c \in \mathbb{R}$, $c \neq 0$). As shown in [3, (2.26) and Theorem (3.1)] the cohomology class of the cocycle of $\{T_i\}$ can be identified with the element $\delta + c\mathbb{Z}$ of the group $\mathbb{R}/c\mathbb{Z}$. The order of this cohomology class will be called the *cohomological order* of $\{T_i\}$. Thus the cohomological order of $\{T_i\}$ is finite (resp., infinite) if and only if δ/c is rational (resp., irrational).

(2.2) THEOREM. Let $\{T_i\} \in \Omega_p \ (1 \le p < \infty)$ be of type (i), with infinitesimal generator A. Let $\{T_i\}$ have the form (0.2), and let c be the angular velocity of its conformal group. If the cohomological order of $\{T_i\}$ is a positive integer k, then A has pure point spectrum, and $\Lambda(A) = i(\rho + cp^{-1} + ck^{-1}\mathbf{Z})$. If the cohomological order of $\{T_i\}$ is infinite, then $\Lambda(A) = i\mathbf{R}$.

PROOF. For $f \in L^p(\tilde{\mu})$, let $\{\hat{f}_{m,n}\}$ be the double sequence of Fourier coefficients of f. Let δ_0 be the unique element of $\delta + c\mathbf{Z}$ such that $0 < \delta_0 \le |c|$. By [3, Theorem (4.4)] A is similar under an isometry to $\mathcal{C} + i(\rho + cp^{-1})$, where \mathcal{C} , the infinitesimal generator of the group $\{S_i\}$ given by

$$(S,f)(z,w) = f(e^{ict}z, e^{i\delta_0t}w), \text{ for } f \in H^p(C^2),$$

has the following description: $\mathcal{C}f = g$ means $\{\hat{g}_{m,n}\} = \{i(mc + n\delta_0)\hat{f}_{m,n}\}$. In particular, for each $(m,n) \in P$ (recall the definition of P in the Introduction), $z^m w^n$ is an eigenvector of \mathcal{C} with associated eigenvalue $i(mc + n\delta_0)$.

If the cohomological order of $\{T_i\}$ is a positive integer k, then $\delta_0|c|^{-1} = jk^{-1}$, where j is a positive integer relatively prime to k. Because j and k are relatively prime, any integer n can be written in the form $n = n_1 j + n_2 k$,

where $n_1 > 0$. It follows that $\{mc + n\delta_0 : (m, n) \in P\} = \{mc + n\delta_0 : m \in \mathbb{Z}, n \in \mathbb{Z}\}$. Also, since j and k are relatively prime, we have $\{mc + n\delta_0 : m \in \mathbb{Z}, n \in \mathbb{Z}\} = ck^{-1}\mathbb{Z}$. If $\lambda \in \mathbb{R} \setminus (ck^{-1}\mathbb{Z})$, let $\lambda_1 = \lambda c^{-1}$, $\delta_1 = \delta_0 c^{-1}$, and define a Borel measure β on C^2 as follows: for each continuous complex-valued function f on C^2

$$\beta(f) = -c^{-1}(e^{i2\pi k\lambda_1} - 1)^{-1} \int_0^{2\pi k} f(e^{i\theta}, e^{i\delta_1\theta}) e^{i\lambda_1\theta} d\theta.$$

Denoting the double sequence of Fourier coefficients of the measure β by $\{\hat{\beta}_{m,n}\}$ we have for all $m \in \mathbb{Z}$, $n \in \mathbb{Z}$,

$$\hat{\beta}_{m,n} = i(\lambda - mc - n\delta_0)^{-1}.$$

For $g \in H^p(C^2)$, let F be the convolution on C^2 , $g * \beta$. Then for $m \in \mathbb{Z}$, $n \in \mathbb{Z}$, $\hat{F}_{m,n} = i(\lambda - mc - n\delta_0)^{-1}\hat{g}_{m,n}$. Clearly, $F \in H^p(C^2)$ and $(\ell - i\lambda)F$ = g. It is obvious from double Fourier coefficients that $(\ell - i\lambda)$ is one-to-one, and thus we have established that ℓ has pure point spectrum equal to $ick^{-1}\mathbb{Z}$.

If the cohomological order of $\{T_i\}$ is infinite, then $\delta_0 c^{-1}$ is irrational, and therefore $\{i(mc + n\delta_0): (m, n) \in P\}$ is dense in $i\mathbf{R}$. So $\Lambda(\mathfrak{C}) = i\mathbf{R}$.

REMARK. By direct calculation using (2.3), it is easy to see that for each $s \in \mathbf{Z}$ the Fourier coefficient of β corresponding to the integer pair $((-\operatorname{sgn} c)sj, sk)$ is i/λ . So by Riemann-Lebesgue β is not absolutely continuous with respect to $\tilde{\mu}$.

REFERENCES

- 1. E. Berkson, R. Kaufman and H. Porta, Möbius transformations of the disc and one-parameter groups of isometries of H^p, Trans. Amer. Math. Soc. 199 (1974), 223-239. MR 50 # 14365.
- 2. E. Berkson and H. Porta, Hermitian operators and one-parameter groups of isometries in Hardy spaces, Trans. Amer. Math. Soc. 185 (1973), 331-344. MR 49 #3597.
- 3. —, One-parameter groups of isometries on Hardy spaces of the torus, Trans. Amer. Math. Soc. 220 (1976), 373-391.
- 4. N. Dunford and J. T. Schwartz, *Linear operators*. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York and London, 1958. MR 22 #8302.
- 5. P. L. Duren, *Theory of H^p spaces*, Pure and Appl. Math., vol. 38, Academic Press, New York and London, 1970. MR 42 #3552.
- 6. H. Helson, Lectures on invariant subspaces, Academic Press, New York and London, 1964. MR 30 #1409.
- 7. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., vol. 31, rev. ed., Amer. Math. Soc., Providence, R.I., 1957. MR 19, 664.
- 8. N. Lal and S. Merrill, Isometries of H^p spaces of the torus, Proc. Amer. Math. Soc. 31 (1972), 465-471. MR 45 #5735.
- 9. —, Characterization of certain invariant subspaces of H^p and L^p spaces derived from logmodular algebras, Pacific J. Math. 30 (1969), 463-474. MR 40 #1778.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801